If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2+16x+1=0
a = 5; b = 16; c = +1;
Δ = b2-4ac
Δ = 162-4·5·1
Δ = 236
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{236}=\sqrt{4*59}=\sqrt{4}*\sqrt{59}=2\sqrt{59}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-2\sqrt{59}}{2*5}=\frac{-16-2\sqrt{59}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+2\sqrt{59}}{2*5}=\frac{-16+2\sqrt{59}}{10} $
| 5(c+3)=4(2c-5) | | 37=-5-11b | | (2x+1)(x+1)=60 | | 0.5d=0.1d= | | 4-8x=4x | | 72=-6p-(-3) | | b+18=20 | | 5(p+8=75) | | 0=16(-x^2+4+5) | | 80=-16x^2+64x+80 | | -80=16x^2+64x+80 | | x=-16*1.25^2+64*1.25+80 | | x=-16*0^2+64*0+80 | | -8=t2-8t+7 | | -8=t^2-8t+7 | | x=-1680^2+64*0+80 | | 7d+5=40 | | 2.8=-10t+7.2 | | (x/2)+7=24 | | x+5/3=17/2 | | 10x+11-8=10x+3 | | 4s+5=41 | | -5x-4.8=6.6 | | -5x-4.8=6,7 | | 0.04(x-180)=200 | | 0.125x=0.125x+0.025 | | 24/55=2/5a | | h^2-3h+100=0 | | w/7=49 | | 1.5q+43.5=1.5q+43.5 | | 1/8-x+1/9=x/8 | | 297-8x)=32-10x |